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Abstract 

Causality is an intriguing but controversial topic in philosophy, statistics, as well as 

educational and psychological research. By supporting Causal Markov Condition and Faithfulness 

Condition, Clark Glymour attempted to draw causal inferences from structural equation modeling. 

According to Glymour, in order to make causal interpretation of non-experimental data, the 

researcher must have some type of manipulation, rather than conditioning, of variables. The 

Causal Markov Condition and its sister, the common cause principle, provide the assumptions to 

structure relationships among variables in the path model and to load different variables into 

common latent constructs in the factor model. In addition, the Faithfulness Condition rules out 

those models in which statistical independence relations follow as a result of special coincidences 

among the parameter values. The arguments against these assumptions by Nancy Cartwright as 

well as those for these assumptions by James Woodward will be evaluated in this paper. 
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Assumptions and Interventions of Probabilistic Causal Models 

Chong Ho Yu, Ph.D. 

 

Introduction 

Causality is an intriguing but controversial topic in philosophy, statistics, and the social 

sciences. Since the introduction of Pearson’s Product Moment Correlation Coefficient, many 

statisticians and social scientists have been conducting research based upon association. For a long 

time the question about whether quantitative methodologies could lead us to causal inferences has 

remained unsettled.  

There are some sound reasons to justify why people are skeptical toward causal inferences 

yielded by statistical models. Yule (1926) pointed out that sometimes we could get 

nonsense-correlations between time-series. For instance, if you plot GNP, educational level, or 

anything against time, you may see some significant correlation. On the other hand, even though 

bad research studies exist, it does not mean that we should abandon the endeavors altogether. In 

recent years, both Glymour and his CMU group (Glymour, 1982, 1983; Glymour, Scheines, 

Spirtes, & Kelly, 1987; Glymour, 1999; Glymour & Cooper, 1999) have been devoting efforts to 

the TETRAD project in an attempt to affirm causal inferences based upon correlational 

information and non-experimental data. Not surprisingly, many scholars have voiced either their 

support or objections to Glymour et al.’s approach.  

Interestingly enough, numbers per se could not determine whether causal information 

could be extracted from the data or the mathematical model. Basically, both proponents and 

opponents of using statistical approach in causality utilize the same numeric information. For 

instance, structural equation modeling, the causal model endorsed by Glymour and Pearl (2000), is 

composed of a measurement model and a path model. In a measurement model, Pearson’s Product 

Moment Correlation Coefficient, which is assocational in essence and a-causal in origin, is used 

for factor analysis. In addition, today the widely used hypothesis testing by statisticians and social 

scientists is a fusion of Fisher, Pearson, and Neyman’s models. As mentioned before, Pearson 

accepted association only and de-emphasized causality. Regardless of whether you believe in 

causality or not, you may still conduct hypothesis testing, run Pearson’s Correlation Coefficient, 

and/or do factor analysis, unless you totally reject quantitative methods. 

If numbers and mathematics alone could not settle the debate of causality, then where could 
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we go to investigate the problem? I believe that the problem is concerned with the philosophical 

aspects, such as the unproved assumptions of statistical modeling. In this paper, two major 

assumptions of Glymour’s TETRAD will be discussed. The arguments against these assumptions 

by Nancy Cartwright as well as those for these assumptions by James Woodward will be 

evaluated. 

Conditioning 

As mentioned in the beginning, when researchers compute the association of observational 

(non-experimental) data, sometime the relationships might seem to be nonsense. In order to gain 

more insights, careful statisticians might partition the data by grouping variables or other lurking 

variables. This kind of activity can be considered “conditioning.” For example, in a research study 

regarding the relationship between the birth weight of babies and the age of mothers (an example 

dataset included in DataDesk, Data Description, Inc., 1999), the regression slope using the full 

dataset (see the black line and the blue bar in Figure 1) indiciates that as the age of mothers 

increases, the birth weight of babies increases. This relationship is counter-intutitive because 

usually as the mother gets older and older, the chance to give birth to a healthy baby is lower and 

lower.  

Figure 1. Relationships among birth weight, age of mother, and race 

 

 

However, when the dataset is partitioned by a grouping variable, race, the issue becomes more 

complicated. The positive relationship between birth weight and age is true among whites. For 
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blacks, the relationship is negative (see the red line and the red bar in Figure 1), while for other 

ethnic groups the regression slope is almost flat, and therefore no significant relationship is 

implied. Please keep in mind that this study is non-experimental for the researcher did not 

manipulate age, race, and birth. Conditioning this kind of observational data always faces this 

problem: No broad generalization about relationships could be firmly made because further 

conditioning and partitioning may reverse the relationship discovered in the aggregate dataset.  

Intervention and Manipulation 

According to Meek and Glymour (1994), computing probabilities by conditioning on an 

event is very different from computing probabilities upon an intervention to bring about that event. 

While talking about intervention, readers may get an impression that Glymour was talking about 

conducting experiments, in which human interventions are imposed on various scenarios. Indeed, 

in Glymour’s view, intervention does not necessarily happen at the data collection stage. At the 

data analysis stage, data manipulation and model building can also be viewed as a different kind of 

intervention.  

Meek and Glymour compared the Fisherian tradition with their own work to show the 

continuity between both. Fisher’s design of experiment could achieve two objectives: (1) To 

ensure that treatment assignment has no common causes and are independent if treatment has no 

effect on outcome; (2) to determine a definite joint probability distribution for treatment and 

outcome under the assumption of no effect (null hypothesis). On one hand, Fisher’s design of 

experiment requires randomization of group assignment to rule out common causes. On the other 

hand, Meek and Glymour asserted that causal claims entail claims about intervention or 

manipulation. If the research study is not experimental, then how could the logic of the Fisherian 

school be applied to causal inferences of non-experimental data? Spirtes, Glymour & Scheines 

(1993) proposed that two assumptions could be employed to bridge the gap between the causal 

structure and the non-experimental data: the Causal Markov Condition (CMC) and the 

Faithfulness Condition (FC). In their view, equipped with these two assumptions, researchers 

could draw causal inferences as if intervention or manipulation had been made to the data. 

Causal Markov Condition 

 In a causal model, joint probability distribution over the variables must satisfy CMC 

(Druzdzel & Glymour, 1995). In CMC, each variable is probabilistically independent from its 

non-descendants, conditional on its parents. In Figure 2, suppose that X1 and X2 are 
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probabilistically independent from each other, and they both contribute to the effect of X3. X4 is 

independent from X1 and X2, conditional on X3. If X1 and X2 were not probabilistically 

independent, the model would be problematic. For example, in a regression model when 

independent variables are highly correlated, the problem of multicollinearity exists and the model 

is not interpretable. The Causal Markov Condition is the assumption of the path model, in which 

relationships among variables are structured. The path model is one of the components of the 

structural equation model adopted by causationists. 

The Causal Markov Condition also implies the common cause principle proposed by 

Reichenbach (1956) and advocated by Glymour and his colleagues (Glymour, 1982; Glymour, 

Scheines, Spirtes, & Kelly, 1987). According to the common cause principle, if a system of 

variables satisfies the Markov Condition, and they have a high degree of association, then there 

exists a latent construct (factor) causing them. The common cause principle is the underlying 

assumption of the factor model, which is also a building block of the structural equation model. 

 

Figure 2. Example of the Causal Markov Condition 

 

Faithfulness Condition 

According to the faithfulness condition, statistical constraints arise from structure, not 

coincidence. As the name implies, FC supposes that probabilistic dependencies will faithfully 

reveal causal connections. In other words, all independence and conditional independence 

relations among observed variables are consequences of the CMC applied to the true causal 

structure. For example, a research study (cited in Glymour, 1987) indicates that providing 



  Causal assumptions 7 

financial aid  to released prisoners did not reduce recidivism. An alternate explanation is that free 

money discourages employment, and unemployment has a positive effect on recidivism while 

financial aid tends to lower recidivism. As a result, these two effects cancel out each other (Figure 

3). However, the faithfulness condition rules out this explanation. 

 

Figure 3. Example of the Faithfulness Condition. 

 

 

Manipulation Theorem 

Meek and Glymour (1994) proposed that when probabilities satisfy CMC and FC, and 

when the intervention is ideal in the sense of manipulation, casual inferences are legitimate. This 

notion is termed the “manipulation theorem.” To be specific, given an external intervention on a 

variable A in a causal model, the researcher can derive the posterior probability distribution over 

the entire model by simply modifying the conditional probability distribution of A. If this 

intervention is strong enough to set A to a specific value, the researcher can view the intervention 

as the only cause of A. Nothing else in the model needs to be modified, as the causal structure of 

the system remains unchanged.  

To implement this theorem, Glymour and his CMU group developed a software-plugin 

named TETRAD to manipulate/intervene on structural equation models by searching all possible 

paths among variables (manipulation by “what-if”). It is important to note that TETRAD is not 

something entirely new. Popular structural equation modeling software applications such as 
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LISREL and EQS have their own automatic path searching algorithms. Nevertheless, Ting (1998) 

found that the hit rates (the success rates of uncovering the right causal structure) of TETRAD’s 

automatic search procedure reach 95% for large samples (n=2000) and 52% for small samples 

(n=200), which are far higher than those offered by LISREL and EQS. 

Cartwright’s Arguments against Glymour’s Ideas 

Empiricist view: No causes in, no causes out 

Many philosophers are opposed to the preceding idea. Due to space constraints, this paper 

will concentrate on Nancy Cartwight only. Cartwright (1999) emphasized the point of “no causes 

in, no causes out.” (p. 39) To be specific, there is no way to get casual information from equations 

and associations. New causal knowledge must be built only from old, empirical causal knowledge. 

In other words, the empiricist’s rule embraced by Cartwright is that the relevant data are the data 

that will fix the truth or falsity of the hypothesis, given the other known facts. Glymour et al. 

included all possible combinations of variables and paths in the model and then irrelevant ones 

were eliminated. Cartwright questioned that if relevant variables and genuine causes are not 

included at the beginning, then this elimination approach is useless. For these reasons, Cartwright 

strongly criticized Glymour et al.’s theory: 

“Because Glymour, Scheines, Kelly, and Spirtes employ the hypothetico-deductive method, 

they must proceed in the opposite order. Their basic strategy for judging among models is 

two-staged: first list all the relevant relations that hold in data, then scan the structures to 

see which accounts for the greatest number of these relations in the simplest way. That 

means that they need to find some specific set of relations that will be relevant for every 

model. But, from the empiricist point of view, no such thing exists.” (p.78) 

In questioning the applicability of CMC, Cartwright (1999) used a classical example to 

argue that researchers may take the risk of confusing a co-symptom with a cause: In R.A. Fisher’s 

opinion, smoking does not cause lung cancer. Rather, smoking and lung cancer are caused by a 

common cause: a special gene that increases the tendency to smoke and to get cancer. Not 

surprisingly, Cartwright asserted that to investigate a hypothesis like this, one must conduct a 

randomized experiment instead of counting on CMC and mathematical intervention of 

non-experimental data. 

Actually, Glymour and his CMU group do not rely on equations alone. Rather, they still use 

empirical data though the data are not non-experimental. It seems that in Cartwright’s view, 
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non-experimental data are not “empirical” enough. First, it is a well-known fact that most data in 

astronomy and geology are not experimental, yet many conclusions in these disciplines are 

qualified to be causal inferences. Second, according to the abductive logic, new knowledge does 

not necessarily arise from old, empirical knowledge (Yu, Behrens, & Ohlund, under review). 

Nonetheless, these popular arguments will not be repeated here. Instead, the discussion will be 

focus on the nature of empirical data. 

A simple definition of empirical data is data that are collected through sensory input and 

could be verified by sensory channels or logical means. When observational data of various 

variables are measured and computed, are their statistical properties empirical? Assuming that the 

data values of these variables indicate a high degree of internal consistency and a single dimension, 

and thus these variables satisfy the common cause principle and are collapsed into a single factor, 

can we regard properties such as “internal consistency” (in psychometric sense, not in logical 

sense) and “unidimensionaity” empirical? My answer is “yes” because they are absolutely 

verifiable. 

Further, assume that I took an IQ test and achieved a score of 200; is the psychometric 

attribute “high intelligence” empirical? According to strict empiricists, the answer is “no” because 

the score is not obtained by repeated experiments. Gaining a high score in one single test could be 

due to pure luck. Right before the test is administered to me, I might take Ginkgo Biloba or read a 

book carrying IQ test items that are similar to the test. To estimate my IQ score in a scientific 

manner, I have to retake the same test several times and to demonstrate a high degree of stability of 

test score over time. However, in many experimental studies subjects are tested or measured just 

once. In theory, the subjects’ memory about the test should be wiped out so that no carry over effect 

is present when subjects are retested. Needless to say, it is impossible and unethical to erase 

people’s memory. Indeed, reliability of many experimental scores is established by mathematical 

modeling. To be specific, by thought experiment the true score model assumes that if the same 

person takes the same test over and over, error scores would scatter around the true score, and the 

observed score is the composite of the true score and the error score. Hence, mathematical models 

are applied to minimize the error score (Yu, 2001). Please keep in mind that “manipulation” of the 

test score is carried out during the data analysis. 

Last but not least, it is doubtful whether objecting that a model may leave out some genuine 

causes or relevant variables and so rejecting the method could help scientific progress at all. First, 
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who could affirm that all relevant variables are included in the model except the omnipotent God? 

Second, is it really necessarily to include all relevant variables? In defense of his standpoint, 

Glymour (1999) wrote, 

“Cartwright is perhaps correct that the whole truth about anything is very complex; but, 

quite properly, science is seldom interested in the whole truth, or aided by insistence upon it. 

In my view, an inquiry that correctly found the causes of most of the variations in a social 

phenomenon and neglected small causes would be a triumph.” (p.59) 

Causal Markov Condition, probabilistic causation, and Simpson’s paradox 

In addition, while Glymour et al. based their causal modeling on probability, Cartwright 

(1999) believed that causal laws cannot be reduced to probabilistic laws and thus CMC is 

questionable. According to Cartwright, “probabilities may be a guide to causes, but they are like a 

symptom of a disease: there is no general formula to get from symptom to disease” (p.243). 

Nevertheless, she did not reject CMC altogether. Rather she pointed out that there is not a universal 

condition that can be imposed on all causal structures. By citing the Simpson’s Paradox (1951), in 

which the conclusion drawn from the aggregate data is contradicted by the conclusion drawn from 

the contingency table based upon the same data, Cartwight (1983, 1999b) asserted that universal 

causal inferences are misleading. The so-called causal relationship is always confined to a 

particular population. For instance, in England once a 20-year follow-up study was conducted to 

examine the survival rate and death rate of smokers and non-smokers. The result implied a 

significant positive effect of smoking because only 24% of smokers died compared to 31% of 

non-smokers. However, when the data were broken down by age group in a contingency table, it 

was found that there were more older people in the non-smoker group (Appleton & French, 1996). 

Based on the Simpson’s Paradox, Dupre and Cartwright (1988) suggested that there are only 

probabilistic capacities, but no probabilistic causal laws at all. In Cartwright’s view, causal 

explanation depends on the stability of capacities. In contrast to probabilistic causation that is 

relative to grouping variables, capacities remain the same when removed from the context in 

which they are measured. 

Inconsistent results happen all the time. If we reject probabilistic causation because there is 

inconsistency, many research projects would become impossible. As a matter of fact, the discovery 

of Simpson’s paradox does not discourage researchers from drawing generalizations. Instead, 

different techniques have been employed by statisticians and social scientists to counteract the 
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potential threat of Simpson’s Paradox. For example, by simulation, Hsu (1989) found that when 

the sample size is small, randomization tends to make groups become non-equivalent and increase 

the possibility of Simpson's Paradox. Thus, after randomization with a small sample size, 

researchers are encouraged to check the group characteristics on different dimensions (e.g. race, 

sex, age, ...etc.), and re-assignment of group membership is recommended if non-equivalent 

groups exist. Further, to avo id the Simpson’s Paradox, Olkin (2000) recommended that researchers 

employ meta-analysis rather than pooling. In pooling, data sets are first combined and then groups 

are compared. As a result, the conclusion drawn from the combined data set could be misleading, 

while insights about the research question are hidden in partitioned data. On the contrary, in 

meta-analysis (Glass, 1976; Glass & Smith, 1981; Hunter & Schmidt, 1990) groups in different 

data sets are compared first in terms of effect size, and then the comparisons are combined to infer 

a generalization (Table 1). In other words, the information of partitioned datasets is given 

consideration first.  

 

Table 1. Example of meta-analysis 

 

Study ID 
Experimental 

group mean 

Control group 

mean 
Effect size 

Correlation 

coefficient 

1 109 100 1.2 0.90 

2 215 200 0.6 0.80 

3 309 300 0.9 0.80 

Average   0.9 0.86 

  

Counter-example of Faithfulness Condition: No models in, no causes out  

Cartwright (1999a) was skeptical toward the universality of FC. In FC, it is not acceptable 

to have two equally powerful causal effects cancel out each other. Nonetheless, Cartwright gave 

one counter-example: Consider the case of fiber optics. Low-loss optical fibers can carry 

information at gigabits per second over a long distance. But pulse broadening effects inherent to 

fiber optics can also smear data as they travel along the cable. In this case, the same original source 

emits two opposite effects that tend to cancel out each other. In order to make fiber optics useful, 
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network engineers must apply complicated engineering schemes to enhance the first effect and 

suppress the latter simultaneously. Thus, Cartwright (2001) argued that the researcher must gather 

the background information about the causal structure under study instead of blindly following FC 

under all circumstances. Any conclusions the researcher draws about causal inferences based upon 

FC can only be as secure as our models of that structure and its operation. That’s why Cartwright 

insisted on “no models in, no causes out” (1999, p.17).  

Actually these so-called “counter-examples” can be found everywhere. Take another 

networking scheme as an example: Consider Ethernet and Category 5 cabling. Ethernet follows a 

bus topology, and thus any one in the network could send out any data packet at any time. As a 

result, data packets may collide with each other. Again, engineers must apply complicated 

methods to make Ethernet useable. Medicine is another example. Last year I was very sick for a 

long time in spite of visiting clinics over and over. Later I was told that my illness was prolonged 

because while the medicine that I took cured a certain kind of disease, it also weakened my body 

and made me vulnerable to other diseases. 

Nevertheless, when we examine these cases carefully, we could find that there were no 

violations of FC. In the networking examples, the positive and negative effects must be exactly 

equal in intensity so that when networking cables are installed, nothing would happen. But it is not 

true. In the first case, the signals are indeed sent into the fiber optics but they disintegrate as they 

travel a longer distance. In the second case, the Ethernet network is still functioning except that 

data collisions happen all the time. In the example of taking medicine, “feeling sick,” like 

“economic problem” and “social ill,” is too ambiguous to be an effect. Indeed feeling sick due to 

one symptom is different from feeling sick due to another. In other words, the positive and 

negative effects do not cancel out each other. If the government increases spending to increase the 

employment rate, the inflation rate may increase, too. But it is incorrect to say that the two effects 

of government spending cancel out each other because “economic problems” still exist. 

Further, without the faithfulness assumption, any model could always be defensible by the 

argument of “canceling-out.” When the welfare program administered to released prisoners is not 

successful in reducing recidivism, it is said that both the encouraging effect and the discouraging 

are at work. The same approach can be used to explain any failure or ineffectiveness. If a doctor 

prescribes the wrong medicine to me and thus my illness is never cured, he could also argue that 

his medicine works but the drug has a side effect to make me feel bad. A good treatment should be 



  Causal assumptions 13 

a robust one. By applying FC, researchers are forced to give a verifiable and clear-cut causal 

conclusion instead of explaining away failure. 

Woodward’s Arguments for Glymour’s Ideas 

Interventions  

James Woodward proposed many interesting ideas that are supportive to Glymour’s theory. 

Two important aspects are his view to interventions and invariance. As most people notice, 

Glymour’s idea of intervention is not the same as the conventional sense. In conventional 

experiments, human intervention is imposed on different settings, and then how subjects react to 

the intervention is recorded. In Glymour’s approach, intervention is imposed on numbers, and how 

numbers react to the intervention is evaluated. But whether it is a true “intervention” is still 

debatable. 

Woodward (2000, 2001) argued that a process or event could qualify as an intervention 

even if it does not involve human action. In other words, a purely "natural" process involving no 

animate beings at a ll can qualify as an intervention if causal information is embedded. This kind of 

research is often described by scientists as a “natural experiment.” Moreover, even when 

manipulations are carried out by human beings, it is the causal features of those manipulations that 

matter for recognizing and characterizing causal relationships. For example, an intervention on 

variable X with respect to a second variable Y is a causal process that changes X in an 

appropriately exogenous way, so that if a change in Y occurs, it occurs only by virtue of the change 

in X, and not as a result of some other set of causal factors. 

In experiments human intervention actually happens in the real world. In the mathematical 

realm, intervention or manipulation happens in a counterfactual fashion, or in the possible worlds. 

The intervention yields answers to questions like “what would happen to Y if X1 were added to the 

model and the coefficient of X2 were down-weighted?” In this case, whether or not the 

interventions that set the value of Xs and Y are carried out by human beings and whether or not 

they have in fact taken place is irrelevant (Hausman & Woodward, 1999). 

Following this idea, intervention in the sense of TETRAD is legitimate. Human 

intervention in experiments does not create causal information or make the data ready for causal 

inferences. Causal properties have already been embedded in the subject matter and experimental 

control is just a way to reveal the causal information. If the data are non-experimental, causal 

characteristics are still within the data. Mathematical intervention, by the same token, is to make 
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the causal relationship more obvious, if there is any. In TETRAD, causal structure is represented in 

a system of equations. When the researcher changes the variables and/or the coefficients of the 

equations, he/she is changing the mechanism(s) or relationship(s) represented by it. Woodward 

(1999) stated that we can view this as a matter of intervening on the dependent variable in the 

equation so that the value of that variable is now fixed by the intervention rather than by the 

variables that previously determined its value. 

Invariance 

The second point made by Woodward on invariance is also relevant to Glymour’s idea. It is 

important to note that in Woodward’s framework, the concepts of invariance and interventions are 

closely related. For example, if Y=a+bX+e is a correct description of the causal relationship 

between X and Y,  by intervening the value of X, the value of Y should change correspondingly 

within a reasonable range of data values. To be specific, in Woodward’s view (2001) a causal 

generalization need not be universal. Rather, it could be just invariant, which means it is stable or 

robust in the sense that it would continue to hold under a relevant class of changes. This claim 

concerning causality is less ambitious than Cartwright’s capacities, which aims to achieve 

context-free causation. Woodward (1998) asserted that many claims in social sciences are made 

within a limited range of circumstances. For example, interventions that change the money supply 

may change the price level in some range of circumstances, but not in others.  Woodward (1999) 

and Hausman and Woodward (1999) gave a humorous example: If I water my plant with 1-3 liters 

of water, my plant would grow. If I water the same plant with 1,000 liters of water and the plant 

dies, it does not negate the statement “water causes plants to grow.”  

This simple argument provides a sound rationale for using linear modeling in TETRAD 

(Glymour, 1987). One popular argument against linear models is that it is too simplified to capture 

the complexity of the real world. In many situations, relationships between variables are non- linear. 

The relationship between stress and performance is a classical example. Psychologists found that 

for most people, as the stress level increases, the performance level increases correspondingly (see 

Figure 4). Nonetheless, the regression slope is reversed when too much pressure is imposed. 

Following Woodward’s argument, if a professor assigned five term papers, six examinations, and 

ten presentations to her students, and as a result the whole class failed, is it right for her to say, “It 

seems that pressure does not improve performance in all situations. Now this causal law breaks 

down!” The main point here is that the validity of a causal model requires invariance within a 
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reasonable range of data values. Cases such as giving 1,000 liters of water to plants and six exams 

to a class must be dismissed. 

 

Figure 4. Relationship between pressure and performance 

 

Conclusion 

In summary, in order to make causal interpretation of non-experimental data, the researcher 

must have some type of manipulation, rather than conditioning, of variables. The Causal Markov 

Condition and its sister, the common cause principle, provide the assumptions to structure 

relationships among variables in the path model and to load different variables into common latent 

constructs in the factor model. In addition, the Faithfulness Condition rules out those models in 

which statistical independence relations follow as a result of special coincidences among the 

parameter values. Putting all these together, TETRAD uses algorithms to examine all possible 

paths among variables to search for a plausible causal explanation. During this process 

intervention is imposed on the data and hence causal claims are justified.  

Cartwright argued for “no causes in, no causes out,” which means without background 

knowledge based upon empirical data, relevant variables and genuine causes may be omitted from 

the model. In this case, path searching and model building by sophisticated algorithms may be 

useless. The counter-arguments are that empirical data should not be narrowly defined in a 

restrictive sense, and the aim of the scientific investigation is not to examine all relevant variables. 

Cartwright objected to probabilistic causations and CMC by citing the Simpson’s Paradox. 

However, statistical methodology is going toward broader generalizations in spite of the threat of 

the Simpson’s paradox. Furthermore, Cartwright gave a counter-example to the faithfulness 

condition and warned that FC should not be adopted without careful investigation of the 
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background information. Nevertheless, rejecting FC may take the risk that any failure can be 

justified by adopting the notion that two equally powerful forces cancel out each other. 

Woodward stated that even with non-experimental data, interventions are still possible 

because interventions are not necessarily carried out by humans at the stage of data collection. In 

data analysis, data values and equation parameters can be manipulated in a counterfactual manner. 

Moreover, the idea of invariance proposed by Woodward could be used to justify the linearity 

assumption of TETRAD. 

Both Cartwright and Woodward made many other points rejecting or supporting TETRAD 

that could not be covered by this short paper. Additionally, besides Cartwright and Woodward, 

many other scholars from various disciplines, such as sociology, computer science, and 

mathematics, have participated in this type of discussion. This phenomenon shows that causality 

has become an inter-disciplinary subject matter. Even among philosophers discussion of this issue 

goes beyond pure philosophy. For example, although the primary role of Cartwright and 

Woodward is that of philosopher, Cartwright is versed in economics and Woodward has a 

mathematical background. Fruitful results are expected when input from such a wide variety of 

perspectives is integrated. 
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